Block Coordinate Descent for Deep Learning: Unified Convergence Guarantees
نویسندگان
چکیده
Training deep neural networks (DNNs) efficiently is a challenge due to the associated highly nonconvex optimization. Recently, the efficiency of the block coordinate descent (BCD) type methods has been empirically illustrated for DNN training. The main idea of BCD is to decompose the highly composite and nonconvex DNN training problem into several almost separable simple subproblems. However, their convergence property has not been thoroughly studied. In this paper, we establish some unified global convergence guarantees of BCD type methods for a wide range of DNN training models, including but not limited to multilayer perceptrons (MLPs), convolutional neural networks (CNNs) and residual networks (ResNets). This paper nontrivially extends the existing convergence results of nonconvex BCD from the smooth case to the nonsmooth case. Our convergence analysis is built upon the powerful Kurdyka-Łojasiewicz (KL) framework but some new techniques are introduced, including the establishment of the KL property of the objective functions of many commonly used DNNs, where the loss function can be taken as squared, hinge and logistic losses, and the activation function can be taken as rectified linear units (ReLUs), sigmoid and linear link functions. The efficiency of BCD method is also demonstrated by a series of exploratory numerical experiments.
منابع مشابه
Feature Clustering for Accelerating Parallel Coordinate Descent
Large-scale `1-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. High-performance algorithms and implementations are critical to efficiently solving these problems. Building upon previous work on coordinate descent algorithms for `1-regularized probl...
متن کاملConvergent Block Coordinate Descent for Training Tikhonov Regularized Deep Neural Networks
By lifting the ReLU function into a higher dimensional space, we develop a smooth multi-convex formulation for training feed-forward deep neural networks (DNNs). This allows us to develop a block coordinate descent (BCD) training algorithm consisting of a sequence of numerically well-behaved convex optimizations. Using ideas from proximal point methods in convex analysis, we prove that this BCD...
متن کاملOptimization with First-Order Surrogate Functions
In this paper, we study optimization methods consisting of iteratively minimizing surrogates of an objective function. By proposing several algorithmic variants and simple convergence analyses, we make two main contributions. First, we provide a unified viewpoint for several first-order optimization techniques such as accelerated proximal gradient, block coordinate descent, or FrankWolfe algori...
متن کاملStochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Stochastic Gradient Descent (SGD) has become popular for solving large scale supervised machine learning optimization problems such as SVM, due to their strong theoretical guarantees. While the closely related Dual Coordinate Ascent (DCA) method has been implemented in various software packages, it has so far lacked good convergence analysis. This paper presents a new analysis of Stochastic Dua...
متن کاملMini-batch Block-coordinate based Stochastic Average Adjusted Gradient Methods to Solve Big Data Problems
Big Data problems in Machine Learning have large number of data points or large number of features, or both, which make training of models difficult because of high computational complexities of single iteration of learning algorithms. To solve such learning problems, Stochastic Approximation offers an optimization approach to make complexity of each iteration independent of number of data poin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018